माना $A =\left\{x_{1}, x_{2}, \ldots, x_{7}\right\}$ तथा $B =\left\{y_{1}, y_{2}, y_{3}\right\}$ ऐसे दो समुच्चय हैं जिनमें क्रमशः सात तथा तीन विभित्र अवयव हैं ; तो ऐसे फलनों $f: A \rightarrow B$ की कुल संख्या, जो कि आच्छादक हैं, यदि $A$ में ऐसे ठीक तीन $x$ अवयव हैं जिनके लिए $f(x)=y_{2}$ है

  • [JEE MAIN 2015]
  • A

    $14.{}^7{C_3}$

  • B

    $16.{}^7{C_3}$

  • C

    $14.{}^7{C_2}$

  • D

    $12.{}^7{C_2}$

Similar Questions

यदि $f(x) = \cos (\log x)$, तब $f(x).f(4) - \frac{1}{2}\left[ {f\left( {\frac{x}{4}} \right) + f(4x)} \right]$ का मान होगा

माना $f : R \rightarrow R$,$f(x+y)+f(x-y)=2 f(x) f(y), f\left(\frac{1}{2}\right)=-1$ द्वारा परिभाषित है। तो $\sum_{ k =1}^{20} \frac{1}{\sin ( k ) \sin ( k + f ( k ))}$ बराबर है

  • [JEE MAIN 2021]

यदि $f(x) = \log \left[ {\frac{{1 + x}}{{1 - x}}} \right]$, तब $f\left[ {\frac{{2x}}{{1 + {x^2}}}} \right]$ बराबर है

माना $[ x ]$ महत्तम पूर्णांक $\leq x$ है, जहों $x \in R$ है। यदि वास्तविक मान फलन $f(x)=\sqrt{\frac{[x] \mid-2}{[x] \mid-3}}$ का प्रांत $(-\infty, a) \cup[b, c) \cup[4, \infty), a < b < c$, है, तो $a+b+c$ का मान है

  • [JEE MAIN 2021]

सिद्ध कीजिए कि $f(x)=[x]$ द्वारा प्रदत्त महत्तम पूर्णाक फलन $f: R \rightarrow R$, न तो एकैकी है और न आच्छादक है, जहाँ $[x], x$ से कम या उसके बराबर महत्तम पूर्णाक को निरूपित करता है।